Fatigue Assessment Model of Corroded RC Beams Strengthened with Prestressed CFRP Sheets
نویسندگان
چکیده
This paper presents a fatigue assessment model that was developed for corroded reinforced concrete (RC) beams strengthened using prestressed carbon fiber-reinforced polymer (CFRP) sheets. The proposed model considers the fatigue properties of the constituent materials as well as the section equilibrium. The model provides a rational approach that can be used to explicitly assess the failure mode, fatigue life, fatigue strength, stiffness, and post-fatigue ultimate capacity of corroded beams strengthened with prestressed CFRP. A parametric analysis demonstrated that the controlling factor for the fatigue behavior of the beams is the fatigue behavior of the corroded steel bars. Strengthening with one layer of non-prestressed CFRP sheets restored the fatigue behavior of beams with rebar at a low corrosion degree to the level of the uncorroded beams, while strengthening with 20and 30%-prestressed CFRP sheets restored the fatigue behavior of the beams with medium and high corrosion degrees, respectively, to the values of the uncorroded beams. Under cyclic fatigue loading, the factors for the strengthening design of corroded RC beams fall in the order of stiffness, fatigue life, fatigue strength, and ultimate capacity.
منابع مشابه
Ultimate Tendon Stress in CFRP Strengthened Unbounded HSC Post-Tensioned Continuous I-Beams
The use of unbounded tendons is common in prestressed concrete structures and evaluation of the stress increase in unbonded tendons at ultimate flexural strength of such structure has posed a great challenge over the years. Based on the bending experiment for two-span continuous post-tension beams with unbounded tendons and externally applied CFRP sheets, the monitoring of the stress increment ...
متن کاملExperimental and Theoretical Investigation on Shear Strengthening of RC Precraced Continuous T-beams Using CFRP Strips
Carbon fiber reinforced polymer (CFRP) sheets are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. It has been widely accepted that carbon fiber reinforced polymers (CFRPs) can be used effectively to strengthen reinforced concrete (RC) members. This paper is intended to study and use externally bonded CFRP strips to repair and st...
متن کاملEffect of Preload Level on Flexural Load-carrying Capacity of RC Beams Strengthened by Externally Bonded FRP Sheets
Most of the laboratory tests investigated the flexural performance of un-preloaded or undamaged RC beams strengthened with CFRP composites. However, in engineering applications, the structural member must carry a certain load or damage. There is a lack of systematical investigations on the effects of preload or damage level on the flexural load-carrying capacity of CFRP-strengthened RC beams. T...
متن کاملFlexural Testing of High Strength Reinforced Concrete Beams Strengthened with CFRP Sheets
The objective of this study is to investigate the effectiveness of externally bonded CFRP sheets to increase the flexural strength of reinforced high strength concrete (HSC) beams. Four-point bending flexural tests to complete failure on six concrete beams, strengthened with different layouts of CFRP sheets were conducted. Three-dimensional nonlinear finite element (FE) models were adopted by A...
متن کاملAnalytical Solutions for the Flexural Behavior of Metal Beams Strengthened with Prestressed Unbonded CFRP Plates
Trapezoidal prestressed unbonded retrofit (TPUR) systems have been recently developed and tested. The authors have already developed a comprehensive and accurate analytical solution for the TPUR system that takes many system parameters into account. The main aim of this paper is to develop a simplified analytical solution for predicting the behavior of metal beams that have been strengthened wi...
متن کامل